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DIRECTIVE EFFECTS IN HYDROBORATIONS OF 1-(TRIALKYLSILYL)-1,3-DIYNES.
SYNTHESES OF (Z)-ENYNES AND o-KETOACETYLENES
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Abstract: Chemo- and regioselective hydroborations of 1-(dimethylthexylsilyl)-1,3-diynes with dicyclohexylborane
or with {bis(1,2-dimethylpropyliborane] furnishes organoboranes which afford on protonation (Z}-enynes and on
oxidation alkynyl ketones.

We have previously shown that monohydroborations of symmetrically dialkyl-substituted 1,3-diynes with
dialkylboranes proceed to place the boron preferentially at the internal positions of the diyne system. Protonolysis of
the organoboron intermediates with acetic acid affords the corresponding (Z)-enynes.! However, this (Z)-cnyne
synthesis unfortunately cannot be employed for the preparation of unsymmetrical enynes since hydroborating agents
do not discriminate in their addition between the triple bonds of unsymmetrically alkyl-substituted diynes. On the
other hand, we have recently shown that the presence of a trimethylsilyl moiety imparts appreciably different
reactivities to the triple bonds of 1-(trimethylsilyl)-1,3-diynes in reactions with lithium diisobutyl-n-butylaluminum
hydride, providing an efficient method for preparing (E)-1-(trimethylsilyl)-3-alken- 1-ynes.?
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We now report that by proper choice of the alkyl groups on silicon in 1-(trialkylsilyl)-1,3-diynes 1 it is possible to
prepare regiodefined enynylboranes, and via protonolysis of these to obtain (Z)-enynes thus complementing the
above (Ej-enyne synthesis. Moreover, oxidation of the enynylboranes with alkaline hydrogen peroxide furnishes -
ketoacetylenes.

Hydroboration of 1-(trimethylsilyl)-1,3-decadiyne 1a with an equimolar amount of dicyclohexylborane in
THF at 0°C resulted in the complete upvtake of the hydride. The reaction mixture was treated with acetic acid-dg,
heated at 75-80°C, oxidized with alkaline hydrogen peroxide, and worked up. GLC analysis of the organic extract
revealed preferential formation of the deuterated (Z)-1-(wrimethylsilyl)-3-decen-1-yne (2, 61 %) along with deuterated
(Z)-1-(trimethylsilyl)-1-decen-3-yne (3, 8%), silyldiene (4, 16%), and starting material (1, 15%).
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TH-NMR analysis of the product mixture showed that deuterium incorporation in the enyne 2 was nearly exclusively
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at C-3.3 This observed preferential attack of the boron at C-3 must result from a combination of electronic and steric
effects. It has been suggested that the 13C chemical shift behavior exhibited by the sp-carbons in I-(trimethylsilyl)-
1,3-diynes is a measure of the distribution of electron density in the 1,3-butadiyne system.#5 Thus, the 13C
chemical shifts (ppm downfield from Me4Si in CDCI3) observed for the diynes la,c and §, which were assigned
using 13C-H coupling data, would appear to indicate not only that the C3 carbon in 1a (R!=CHa3) has the highest
electron density, but also that the two triple bonds do not interact appeciably.

n-CgHy3—Cy=C3 —C,=C, —SiMe, Me;Si—C4,=C;—C,=C;—SMe,
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774 658
5

That the trimethylsilyl group does exert a powerful directive effect is evident when one examines the regiochemistry
of hydroboration of the diyne in which the trimethylsilyl group in 1a has been replaced by the z-butyl group. In this
case, addition of B-H to the diyne system places nearly equal amounts of the boron at both internal positions of the
triple bonds.1.6
A marked improvement in chemoselectivity for B-H addition to the alkyl-substituted triple bond was observed

when the diyne la (R1=CH3) was hydroborated with the more hindered disiamylborane [bis(1,2-dimethyl-
propyl)borane]. Deuterolysis-oxidation of the resultant organoboranes furnished a 78:6:7:9 mixture of compounds
2, 3.4, and 1, respectively. When the size of the alkyl group on silicon was also increased, we were pleased to
observe that chemo- and regioselective hydroboration of 1,3-diynes was achieved.Thus, replacing the trimethylsilyl
group in 1a by the r-butyldimethylsilyl or even better by the dimethylthexylsilyl moiety and using disiamylborane as
the hydroborating agent resulted, after protonation, in the nearly selective formation of the enyne 2. A similar
dependence in chemo- and regioselectivity of hydroboration upon the size of the trialkylsilyl group was observed
with the cyclohexyl substituted diyne 1b,7

Hydroboration of the symmeirically-substituted 1,4-bis(irimethylsilyl)-1,3-butadiyne (1e¢, R!=CHz3) with
disiamylborane followed by treatment of the resultant enynylborane with acetic acid-d4 furnished a 26:74 mixture of
enynes deuterated at the C-1 and C-2 positions, respectively. In this connection it should be noted that hydroboration
of symmetrically alkyl-substituted 1,3-diynes with disiamylborane places 95+£3% of the boron at the internal
positions of the triple bonds. A diminished regioselectivity for addition of boron to the bis-silylated diyne as
compared with the symmetrically alkyl-substituted diynes is predicted based on the the 13C chemical shifts observed
for the diynes Lc and 5, respectively. Regioselective B-H addition at the C-2 carbons of the bis-silylated diyne was
achieved when both of the trimethylsilyl groups in l¢ were replaced by dimethylthexylsilyl groups.!}

The availability of regiodefined enynylboranes 6 derived from hydroboration of 1-(dimethylthexylsilyl)-1,3-
diynes with dialkylboranes provides, via oxidation with alkaline hydrogen peroxide, the synthetically valuable 1-
(trialkylsilyl)-3-oxo-alk-1-ynes 7.12.13 Protonolysis of the diyne monohydroboration products with glacial acetic
acid affords the corresponding (Z)-1-trialkylsilyl-3-alken-1-ynes 813.15 possessing the easily manipulable
trialkylsilyl ethynyl moiety. Desilylation of 8 with n-BugNF in THF furnishes the corresponding (Z)-3-alken-1-ynes
9 whose structural feature is embodied in a number of biological active compounds.}3 A summary of the results
obtained is shown in the Table.



6489

HZOQ-NaOAc 9
— = RCH,CC=C-SiR}

R =—SiR} 7a-c

Hog B9 1,CH;cOH R =—SiR} nBuflF R H
. CH3COyl 3 mBuy =
o >=<=- ud >=<_—

H H H H
8a-c 9a-c

Table. Yields of Enynes and o-Ketoacetylenes Derived from 1,3-Diynes

diyne R SiR;a RZIBHC‘d productsf& %
7 8 9
la n-CeHi3 A Cy,BH 80 86 (97)
A SiapBH 88 (98) 89
b oCeHy A Cy;BH 82  85(97)
A SiapBH 86 (98) 93
B SiapBH 88 (98)
1e ThMe;Sib A SiapBH® 82 95 (99) 94

2 A=MesthexylSi; B=(z-butyl)Me;Si. P MesthexylSi. € CysBH=dicyclohexyl-
borane; SiasBH=disiamylborane. 4 1.1 equiv. of the hydroborating agent was
used. ¢ 1.2 equiv. of the hydroborating agent was used. f Isolated yields.

Isomeric purities are in parentheses. £ The IR, !IH-NMR, and mass spectral data
of the compounds are consistent with the assigned structures.

Especially attractive because of their synthetic potential are the diyne lc¢ (Ri=dimethylthexyl), its B-
ketosilane derivative 7¢ containing the enynylsilyl moiety, and the enyne 8¢. Although their utility as intermediates
in organic synthesis remains to be explored, preliminary experiments revealed that 8¢ may be elaborated to enyne 10
in 86% yield. Thus, the methodologies developed in this study provide access not only to 3-alken-1-ynes 9 but also
to the isomeric 1-alken-3-ynes 10, as exemplified below.

o 1 . 1q -
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